Usher proteins in inner ear structure and function.

نویسندگان

  • Zubair M Ahmed
  • Gregory I Frolenkov
  • Saima Riazuddin
چکیده

Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell biology of mechanotransduction in inner-ear hair cells

The cloning of deafness genes, especially those for Usher syndrome, has helped to identify a variety of structural proteins involved in the development and function of hair-cell stereocilia. These include novel cadherins, a handful of myosin motors, and scaffolding proteins. Yet a new understanding of these proteins has upended the orthodox view of mechanosensation by hair cells.

متن کامل

Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells.

Usher syndrome type IIa (USH2A) combines moderate to severe congenital hearing impairment and retinitis pigmentosa. It is the most common genetic form of USH. USH2A encodes usherin, which was previously defined as a basement membrane protein. A much larger USH2A transcript predicted to encode a transmembrane (TM) isoform was recently reported. Here, we address the role of TM usherin in the inne...

متن کامل

The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1.

Mutations in the DFNB31 gene encoding the PDZ scaffold protein whirlin are causative for hearing loss in man and mouse. Whirlin is known to be essential for the elongation process of the stereocilia of sensory hair cells in the inner ear, though its complete spatial and temporal expression patterns remained elusive. Here, we demonstrate that, in embryonic development, the gene is not only expre...

متن کامل

Usher syndrome: Animal models, retinal function of Usher proteins, and prospects for gene therapy

Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher ...

متن کامل

Usher syndrome: molecular links of pathogenesis, proteins and pathways.

Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 45 21  شماره 

صفحات  -

تاریخ انتشار 2013